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SIGNIFICANT CONTRIBUTION

• Validated and compared existing models for reaching motion in handover, including

the recently proposed elliptical motion model, the popular minimum jerk trajec-

tory, and its variation: decoupled minimum jerk trajectory.

• Formulated a trajectory generator using the elliptical motion model based on ob-

servations from the dataset.

• Implement trajectory generators (ellipse, minimum jerk and decoupled minimum

jerk) on robotic arm Panda Franka Emika to perform handover.

• Designed user studies to evaluate the performance of different trajectory generators

based on participants’ perception, such as the feeling of safety, trust, or fluency.

The Monash Board of Ethics has approved this study.
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PROJECT AIMS 

• Validate elliptical model [1] on unconstrained human 

handover dataset [2] 

• Creation of an elliptical handover motion generator 

• Implementation of the created motion generator. 

VALIDATION RESULT 

• In unconstrained condition, a more general form of el-

lipse: conic model, fits best. There is a split between 

hyperbolic and elliptical model. 

• Out of  1195 samples from the dataset, best-fit models 

are distributed, along with fitting error: 

ERROR CONIC DMJ MJ 

Mean (mm) 2.0 2.4 14.3 

STD (mm) 3.2 3.9 12.4 

MAX (mm) 34.2 34.5 121.9 

• Statistical analysis reveals that there are significant dif-

ferences between Conic model compared to the rest.  

• Conic model is proved to be the best fit. 

TRAJECTORY GENERATOR 

For the same initial and terminal condition, we found: 

• Ellipse’s plane’s orientation are consistent. 

• Arcs corresponding to handover motion are consistent. 

• Major and Minor axes’ length’s ratio are consistent.  

An ellipse is fully defined in space for arbitrary object-

pickup point and handover point with these information. 

The trajectory can be time parameterized with a fitted 

sigmoid function . 
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BACKGROUND 

• Service robotics is more and more popular and hand-

over is a  fundamental task 

• A human-like motion is preferred by human 

• Reaching motion is proven to elliptical 

Figure 1:  Motion Capture data visualized in Vicon Nexus 

Figure 2: Fitting Result Table 1: Fitting Error Statistics 

Figure 3: Robot-Human Handover using Elliptical Trajectory 

Figure 4: Fitting a Sigmoid  
Figure 5: Elliptical Trajectory in 

Simulation 
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EXECUTIVE SUMMARY

This document is a Final Year Project report on generating humanlike motions for

a robotic arm, in Human-Robot handover scenario, where the robot is the

giver. An existing dataset on unconstrained human-human handover (where the person

is allowed to move their whole body) is first processed to extract the reaching motion

of the handover and fitted it against 1) the Minimum Jerk model, 2) its variation,

the Decoupled Minimum Jerk model, and 3) the recently proposed Elliptical (conic)

model. Results showed that Conic model fits unconstrained human handover

reaching motions best. Furthermore, we discovered that unlike constrained, single-

person reaching motions, which have been found to be mostly elliptical, there is a split

between elliptical and hyperbolic types. We then analyzed the extracted handover

reaching motions, only where the elliptical model fits best, to (successfully) generalize

into an elliptical trajectory generator and implemented this trajectory generator on

Panda Franka Emika robotic arm. Finally, we designed a user study to evaluate the

performance of different trajectory generators based on participants’ perception

(feeling of safety, trust, fluency, and working alliance). This user study has been

approved by Monash Board of Ethics.
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Chapter 1

Introduction

1.1 Human-Robot Handover

1.1.1 The demand

The service robotics sector has been rapidly growing in the recent decades, with much

development for different applications such as homecare [1], hospital [2], manufacturing

[3], and agriculture [4]. In many of these service robot applications, object handover is a

fundamental task that will frequently arise. For example, handing over a screwdriver in

a factory [5], handing over a TV remote at home [6], or handing over a flyer at a shopping

mall [7]; thus, efficient performance of handovers is essential to the effectiveness of robots

belonging to this category.

1.1.2 The challenge

While humans typically perform handovers with ease in various situations, it is still

challenging for current robotic systems. Object handover is a joint-action task involving

two agents, the giver and the receiver. Careful coordination between the two agents is

required during the task to ensure successful transfer of the object from the giver to the

receiver [8–10]. From a sensing, coordination, and safety perspective, it is much more

challenging than solo object manipulation tasks such as grasping and pick-and-place,

where there is no human partner involved.

1
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1.2 Human Behaviour In Handover

1.2.1 Utilization of subtle communication channels

Humans utilize different communication channels (e.g., gaze, reaching motion, haptics,

pose) during different phases of a handover task (i.e., approach phase, reaching phase,

object transfer phase, retracting phase) to coordinate the different aspects of handovers

(i.e., where, when, how). For example, the timing of when the giver lifts their hand

and object during the approach can convey their intent to hand over the object to the

receiver [11]. Gaze is used during the reaching phase to establish where object transfer

is to take place [12]. During the object transfer phase, haptic channels are used to

communicate when the ownership of the object is fully transferred from the giver to

the receiver [13]. While human adults typically have become adept at understanding

such non-explicit communications, most robots currently do not quite understand these

communication modalities. Hence, to improve fluency and performance of human-robot

object handovers, we need to enable robots to understand the different communication

modalities used by humans during object handovers (O1). For example, by teaching

robots how to interpret human reaching motions, we can also enable robots to infer a

human’s intent to hand over an object and anticipate the location and timing of object

transfer from the observed human arm motion, such that robot receivers can react in a

more responsive and timely manner [14].

Many studies have investigated various communication cues used by humans for han-

dovers and their application to human-robot handovers. Researchers have studied and

compared reaching motions used in handovers [11, 15–17]. Results showed that, in gen-

eral, robots employing humanlike reaching motions are preferred. The role of gaze in

handovers has been investigated [12, 18], with findings indicating that the use of human-

like gaze behaviours by robots can facilitate more time-efficient handovers. Studies on

dynamics in handovers have also revealed grip force control strategies and haptic-based

communication used by humans for coordinating object transfer [13, 19], and demon-

strated successful application to human-robot handovers [9, 10, 20]. Human body motion

and kinematics leading to handovers have been studied, and classifiers have been built

for predicting the occurrence of handover events [21, 22]. The role of object pose in

handovers have also been studied [23, 24], and methods proposed for computing proper

object configurations for handovers. These and other works have shown that enabling
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robots to employ humanlike behaviours improves human-robot handovers. However, hu-

man behaviours in handovers are not always well understood. Hence, towards improving

human-robot handovers, there has been much research on understanding and modelling

human behaviours in different aspects of handovers. (O2)

1.2.2 Arm reaching motions in handover

While there exist many studies on understanding the different communication channels

used in the different phases of handovers, the focus of our project is on arm motions

in the reaching phase of handovers. During handovers, the reaching motion of the arm

not only serves to transport the object to the point of object transfer. It also serves to

communicate where and when the object transfer is to take place. Much earlier studies in

physiology have observed invariant properties in human reaching motions [25]. Studies

have shown that human point-to-point reaching motions are roughly straight and follow

a bell-shaped velocity profile [26, 27]. Hence, a person’s reaching motion can provide

cues to the observer about their intent and the timing and location of the reaching

endpoint (i.e., where object transfer occurs). Humans naturally and subconsciously

exhibit and utilize such cues for coordinating handovers. Thus, to enable fluent human-

robot handovers, one widely adopted approach is to enable human-like reaching motions

for robots [15, 16, 28] (O3). Various models have been proposed to describe human

handover reaching motions, and applied to human-robot handovers. However, there has

not been empirical validations of such models to show whether these models fit natural

human handover motions well - this has largely remained an assumption. Hence, to

improve human-robot handovers by enabling the generation of more humanlike reaching

motions, the first half of this project focuses on validating and comparing proposed

models with a dataset of observed natural human handover motions.

1.3 Proposed Robot Behaviour in Handover

Having a validated model of human handover motion will allow us to implement more hu-

manlike motions towards enabling more fluent human-robot cooperations. Furthermore,

by employing humanlike reaching motions, the robot can make its action more legible

and predictable to humans [29]. Legibility refers to making the robot’s intent to han-

dover the object more apparent, and predictability refers to making the robot’s reaching
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endpoint more easily anticipated, which can potentially improve subjective metrics for

human-robot handover such as the feeling of safety, trust, fluency, and working alliance.

1.4 Objectives of Project

This Final Year Project involves achieving Objective 2 (O2) and Objective 3 (O3).

Unfortunately, the scope of this project does not include Objective 1 (O1). However, a

parallel research conducted by Sara Sheikholeslami, with our collaboration, is tackling

this exact problem.

1.5 Overview of this documents

The organization of this report is as follows: Related literature is reviewed in Chapter

2 and the way we process data is described in Chapter 3. The models fitting method

are described in Chapter 4 and the fitting results are reported in Chapter 5. A method

to formulate a trajectory generator is then proposed in Chapter 6, and the user study

design is presented in Chapter 7. We discuss the results and future work in Chapter 8

before concluding in Chapter 9.



Chapter 2

Related Work

Human handovers typically happen very fast (within ∼1.2s according to our dataset).

Thus, to enable online generation of handover trajectories, a computationally fast model

is required. Although more advanced and complex models such as those drawn from

biomechanics or Inverse Optimal Control for describing human motions exist, they are

less suitable for the target application of real-time human-robot handovers. In this

section, we describe existing models that have been proposed for and/or applied to

human-robot handovers.

2.1 Reaching Motion Models

As mentioned in section 1.2.2, early studies have shown that human reaching motions

exhibit invariant properties. The Minimum Jerk trajectory model has been formulated

for describing such observed human reaching motions in the 1980s[30, 31]. Since then,

this model has been widely accepted and applied to robot reaching motions in various

human-robot interaction tasks, including object handovers, and continues to be used for

modelling human handover motions in recent works [32, 33]. Early on, velocity pro-

files resembling the Minimum Jerk trajectory were applied to 1D tabletop human-robot

handovers [15]. Compared to typical industrial robot trajectories, a minimum-jerk-like

trajectory allowed the robot to be perceived as more careful, pleasant, and skilled. Later,

the Minimum Jerk trajectory was applied to 3D handover tasks seated at a table [16].

Similarly, a Minimum Jerk trajectory allowed the robot to be perceived as safer with

5
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a shorter reaction time from human receivers. While the original applications of the

Minimum Jerk model assumed that the path, like human reaching motions, is, in gen-

eral, approximately straight [26, 27], it has later been shown that reaching motions in

handovers are curved [28]. As a result, a Decoupled Minimum Jerk trajectory model was

proposed, which decouples the 3D reaching motion into two Minimum Jerk trajectories

- one in the z direction, and one in the orthogonal xy plane [28]. This results in a curved

trajectory but still has the characteristic that the ending portion of the trajectory is

straight. While existing studies demonstrated the benefits of employing human-like mo-

tions for human-robot handovers, they have not explicitly fitted the proposed models to

experimental data to evaluate how well these models describe human handover motions.

Recently, a new Elliptical model has been proposed for human reaching motions. This

model has been experimentally shown to accurately fit human reaching motions in single-

person reaching tasks [29]. In this study, the experimenter investigated a seated, tabletop

pick-and-place task. It was suggested that the Elliptical model could potentially be ap-

plied to reaching motions in human-robot interaction tasks such as handovers. However,

it has not yet been shown that human reaching motions in the joint action task of

handover also follow the proposed Elliptical model.

2.2 Constrained versus Unconstrained Handover

Literature shows that movement planning and control for single-person reaching motions

vary with task context [34]. It has also been shown that there is online coordination

and adaptation between the giver’s and receiver’s actions during handover tasks [13, 14].

Hence, reaching motions in single-person tasks and joint action tasks such as handovers

may be different. Furthermore, existing studies have been primarily limited to con-

strained tasks, where participants performed the task seated, over a tabletop handling

one generically shaped object [15, 16, 28, 29]. This is quite different to everyday han-

dovers that service robots will need to perform. Thus, we aim first to verify if human

reaching motions in unconstrained handovers, handing over everyday objects, fit existing

proposed models, and evaluate which model fits best.

This report will discuss in detail the three implemented models in Chapter 4.
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Dataset Processing

3.1 Human Handover Dataset

This project analyzed the publicly available Handover Orientation and Motion Capture

Dataset1 [35], which contains 1200 unconstrained human-human handover trajectories

performed by twenty participants recorded by a Vicon motion capture system. In the

dataset, twenty common objects (Fig. 3.1) were used, and each handover started with

the giver and receiver standing facing each other, and one of the objects placed on a

table left, right, or behind the giver. Fig. 3.2 shows the data collection setup. The giver

picked up the object and handed it over to the receiver using unconstrained motion (i.e.,

they were allowed to move their whole body). The only constraint in this dataset is that

the giver can only use their right hand to perform handover for consistency. There are

also three modes the participants have to follow for each object: A - natural handover,

B - giver centered handover (focus on the comfort of the giver), and C - receiver centered

handover (focus on the comfort of the receiver). Additional details of the data collection

procedure can be found in [35].

1 https://bridges.monash.edu/articles/Handover_Orientation_and_Motion_Capture_Dataset/

8287799

7
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Figure 3.1: The twenty common everyday objects used for handovers in the dataset.
(Image from [35].)

Figure 3.2: Data collection setup for collecting human handover motions in the
dataset. (Image from [35].)

3.2 Handover Segmentation

For pre-processing, few missing data points of each sample (if there are any) are in-

terpolated using MATLAB function interp1 with spline option. Performing Spectral
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Figure 3.3: Plot of distance between giver’s hand and object, and distance between
giver’s hand and receiver’s hand in an example handover trial.

analysis 2 on the dataset reveals most signal power reside below 7Hz, so we filtered all

handover trajectories using a 10 Hz low pass Butterworth filter. A median filter with

windows length = 3 is ten applied to remove any irregular jumps.

To segment the handover reaching motion, we first identified the instance when the

giver first touches the object, tOGC , and the instance when object transfer occurs, tRGC .

These instances are found by identifying the point in time when the distance between

the giver’s hand and object reaches a minimum, and when the distance between the

giver’s hand and receiver’s hand reaches a minimum, respectively. Fig. 3.3 shows an

example from a typical trial. The end of the reaching motion, tend, is then simply tRGC .

Determining the start of the handover reaching motion, tstart, however, requires an extra

step. Inspecting the data, we observed two common giver tendencies: Case 1) reaching

directly towards receiver after object pick up (73.97%), Case 2) first bringing the object

closer to themselves before reaching towards the receiver (26.03%). Fig. 3.5a, 3.5b shows

example speed profiles demonstrating the two tendencies. In the latter case, the giver

2 using ftt from MATLAB to perform Fourier Transform on the signal, and computing the power
of Discrete Fourier Transform as guided on the official document provided by MATLAB https://au.

mathworks.com/help/matlab/math/basic-spectral-analysis.html

https://au.mathworks.com/help/matlab/math/basic-spectral-analysis.html
https://au.mathworks.com/help/matlab/math/basic-spectral-analysis.html
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Figure 3.4: Segmented handover reaching trajectory)

slows down slightly as they bring the object closer to themselves, manifesting a trough.

To further validate this description, multiple live samples were inspected using Vicon

Nexus software (software to visualize and playback all the recorded data by Vicon),

where the handover is classified as Case 2. The trough in velocity indeed corresponds

to the described action. Hence, we detect this by inspecting if the region where the

object’s speed is >70% peak speed (Fig. 3.5 red portion) contains any local minimum.

In Case 2, the start of the handover reaching motion, tstart, is determined to be this

local minimum, while in Case 1, tstart is determined to be the last local minimum that

is <50% peak speed (Fig. 3.5 black portion).

Since this handover dataset is unconstrained, we sometimes find noisy data points near

the beginning and the end of the segmented handover reaching motion, mostly due

to artefacts of different motion blending together, i.e. object picking motion, getting

ready motion, fine adjustment towards the end, etc. To filter this out, when fitting each

trajectory model, we included only points that lie within 3 standard deviations of the

best fit plane. The best fit plane is estimated using ∆% of the segment, terminated at

the point that is δ mm below the highest point in the segment. This is because towards

the end, the fine adjustment of the giver to meet the receiver’s hand often diverges from

the reaching plane since it highly depends on the mode of the handover and how good the

mutual understanding of the 2 participants on the object transfer point was. Hence, we
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(a) (b)

Figure 3.5: Typical speed profile of an object. a - Giver immediately hands an object
over after picking it up. b - Giver brings the object closer to themselves first after

picking up the object before handing over.

terminted the initial guess of best fitted plane before the end points of the segmentation

so far. The algorithm can be described as:

Algorithm 1: Final adjustment to extract handover reaching motion

T is a Cartesian point, index start at 1, i.e. T [1] is x, T [2] is y, T [3] is z;
T is the segmented reaching motion so far. T = {Tj}, j = 1 · · ·M,T ∈ R3×N ;
N = ∆%×M ;
TA ∈ T, such that TA[3] ≥ Tj [3], j = 1 · · ·M ;
TB ∈ T, such that TB[3] + δ < TA[3], TB+1[3] + δ > TA[3], B < A;
Q = {Ti}, where i ∈ {B −N,B −N + 1, B −N + 2, · · · , B};
P is the plane that fit cluster Q (details in section 4.2.1);
while P does not change do

Q = {Tk} ⊂ T, where Tk is within 3 stardard deviation of distance to plane P;
P = best fit plane for Q;

end
return Q

We empirically set ∆=20 and δ=0.005 to capture as many coplanar points within the

handover trajectory as possible while excluding other data points belonging to arm

motion before and after the handover trajectory. Fig. 3.4 shows the segmented handover

trajectory and data points included for model fitting from one typical example trial.
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Models Fitting

4.1 Models

4.1.1 Elliptical (Conic) Model

Recently, it has been empirically shown that the trajectory of human reaching motions

in pick-and-place tasks is curved in 3D space but planar, and that an elliptical curve

achieves a good fit to the path drawn out by the projection of the trajectory on the

best-fit plane [29]. A general conic section on a given plane can be expressed as:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (4.1)

Once we found the best fit coefficients for a particular path in space, we can classify the

conic section by its discriminant 1: Ellipse if B2−4AC < 0, Parabola 2 if B2−4AC = 0,

Hyperbola if B2 − 4AC > 0, or Circle if A = C and B = 0 [36].

1 Since we are looking at curves, we will not consider the degenerate case where A = B = C = 0, or
the case where trivial solution is the only solution, such as when B = 0, and D2/4A + E2/4C − F > 0

2 In practice, if B2 − 4AC < 1e-12, B2 − 4AC is considered to be equal to 0. However, samples that
are identified as parabola with this threshold are fitted with hyperbolic model. Condition number for
these calculation are not high because B2 − 4AC > 1e-15 for all samples

12
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If the conic section is classified as an ellipse, we can express it in parametric form [37]

as [
x(θ)

y(θ)

]
=

[
xc

yc

]
+

[
cos(τ) − sin(τ)

sin(τ) cos(τ)

][
a cos(θ)

b sin(θ)

]
(4.2)

where xc, yc is the ellipse center, τ the inclination angle, and a, b the semi-major and

semi-minor axes. Using this form, we can generate a trajectory by specifying the de-

pendence of θ on time. Notice that in both forms, we only need five parameters to fully

define an ellipse as this will be proven useful later when we try to formulate a trajectory

generator in Section 6.3.

If the conic section is classified as a hyperbola, we can also express it in parametric form

as [
x(θ)

y(θ)

]
=

[
xc

yc

]
+

[
cos(τ) − sin(τ)

sin(τ) cos(τ)

][
a sec(θ)

b tan(θ)

]
(4.3)

4.1.2 Minimum Jerk Model

The Minimum Jerk model hypothesizes that human arm motion between two points in

space minimizes the jerk over the entire path [30]. Given position over time r(t), jerk is

the third derivative of position,
...
r (t). The smoothness of the path can be measured by

S =

∫ tf

0

...
r (t)2dt (4.4)

where tf is the duration of the motion. The Minimum Jerk trajectory is the trajectory

r(t) that minimizes the quantity S given by Eq. 4.4. The solution [30] takes on the form

of a fifth degree polynomial:

r(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5, (4.5)

where the coefficients ai are determined by the boundary conditions, i.e., the position,

velocity, and acceleration at start and end points of the trajectory (further details in

Appenix A). The Minimum Jerk trajectory assumes a straight line path between the

start point and the end point.
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4.1.3 Decoupled Minimum Jerk Motion Model

Literature has shown that if we decouple the z axis motion from the xy plane motion

by specifying two Minimum Jerk trajectories with different durations for the two com-

ponents, we obtain a curved trajectory that more closely resembles human handover

reaching motions [28]. This Decoupled Minimum Jerk trajectory is described by

rz(t) = a0z + a1zt+ a2zt
2 + a3zt

3 + a4zt
4 + a5zt

5, (4.6)

rxy(t) = a0xy + a1xyt+ a2xyt
2 + a3xyt

3 + a4xyt
4 + a5xyt

5, (4.7)

where rz(t) is the trajectory in the z direction, with duration tz, and rxy(t) is the trajec-

tory in the xy plane, with duration txy,. The coefficients aiz and aixy are determined by

their boundary conditions and corresponding duration (further details in Appenix A).

The Decoupled Minimum Jerk trajectory results in a curved path in 3D space, residing

in a plane orthogonal to the xy plane.

4.2 Fitting Procedure

4.2.1 Plane Fitting

If we have a set of n data points in Cartesian space, we can construct the following

matrix

X =

x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn


3×n

Which can then be used to construct the covariance matrix

Σ =
(X−Xcentroid)(X−Xcentroid)T

n

Performing Principle Component Analysis (PCA) on matrix X, essentially finding the

eigenvectors of Σ, will give us three eigenvectors denoting the directions in which the data

spreads, and their corresponding eigenvalue denoting how much the data is spreading

in that direction [38]. If X is indeed planar, then there exists an eigenvalue that is

significantly smaller compared to the others. Since eigenvectors obtained from PCA are

orthogonal to each other, the eigenvector corresponding to the smallest eigenvalue is the
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normal vector to this plane. Because a plane is fully defined by its normal vector (and

the centroid), we found the best fitted plane. MATLAB conveniently offers function pca

to compute the principal components directly.

4.2.2 Error Calculation

For each fitted model, we compute the fitting error as the average Euclidean distance

from each data point to the correspondent point on the fitted model:

err =
1

N

N∑
i

||rgi − ri|| (4.8)

where ri is the ith data point in reaching trajectory, and rgi is the correspondent point

on the fitted model. We define the correspondent point as the point on the fitted curve

with the smallest Euclidean distant (closest point) from the data point. For each motion

model, the correspondent point rgi to each data point ri is computed as described in

section 4.2.5, 4.2.3, and 4.2.6.

Note: Decoupled Minimum Jerk and Minimum Jerk are techniques to generate trajectory

with respect to time. However, we are more interested in the path fitting aspect at this

stage; therefore, correspondent points for Minimum Jerk and Decoupled Minimum Jerk

are found using the closest point on the path to a data point, instead of using time

parameter.

4.2.3 Minimum Jerk Model

Since the Minimum Jerk trajectory path is defined as a straight line in 3D, finding the

correspondent point reduces to finding the closest point on a line to a given point. This

can be easily solved analytically. Let P 1 be the start point, and P 2 be the final point,

on the reaching trajectory. The correspondent point is given by

rgi = P 1 − (P 2 − P 1)

(
(P 1 − ri) · (P 2 − P 1)

|P 2 − P 1|2

)
(4.9)
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P

Figure 4.1: Projecting Data Points to plane P. A is a data point, Aproj is the projec-
tion of A on P, A′

proj is the correspondent point of Aproj (the difference is exaggerated
for visualization), and A′ is A′

proj projected back to 3D space.

,

4.2.4 Fitting 2D model to 3D data points

Once we found the best fit plane P, to fit a 2D model, one approach would be projecting

all the segmented data points onto that plane and fit a model. While this is straight-

forward in the ”feedforward” direction, converting the 2D correspondent points back to

3D is a cumbersome process because:

• We have to store the signed distances from each data points to the plane. The sign

depends on which side of the plane the data point is on.

• From figure 4.1, it is clear that we have to keep track of the arbitrary bases of

plane P that the projected point is expressed in. Because we have to express A′proj
back in the original coordinate before obtaining A′ (by using the signed distance

and the normal vector of plane P).

Hence, instead of this approach, the following procedures will offer a more elegant and

efficient way to transform the data points for fitting:
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1. Fit plane P to the segmented reaching motion (Q from Algorithm 1, Q ∈ R3×N ),

obtaining normal vector ~n of P.

2. Rotate P such that P is horizontal, i.e. aligning ~n, or n̂ (normalized ~n) with k̂

(unit vector of z axis). Applying Rodrigues’ rotation formula will yield rotation

matrix R (Appedix B).

3. Left-multiply all the data points in the segmented reaching motion with R to rotate

as described in step 2, Qrot = RQ, Qrot ∈ R3×N .

4. Remove the z component of the rotated data points, Q, to effectively collase all

points onto xy plane, obtaining Q2D

Qrot =

x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn


3×n

⇒ Q2D =

[
x1 x2 · · · xn

y1 y2 · · · yn

]
2×n

5. Use Q2D to fit different 2D models: elliptical model in section 4.2.5, decoupled

minimum jerk model in section 4.2.6. Then, we obtain the matrix of correspondent

points, Qcorr
2D

6. Restore the z component (from Qrot) for each 2D correspondent point

Qcorr
2D =

[
x1corr x2corr · · · xncorr

y1corr y2corr · · · yncorr

]
2×n

⇒ Qcorr
2D =

x1corr x2corr · · · xncorr

y1corr y2corr · · · yncorr

z1 z2 · · · zn


3×n

then we left-multiply Qcorr
2D with R−1 to find the fitted correspondent point in 3D

Qcorr
3D = R−1Qcorr

2D

where ith column of Qcorr
3D is rgi

4.2.5 Elliptical (Conic) Model

With Elliptical model, after obtaining Q2D from step 5 of section 4.2.4, our objective

is to find the best-fit coefficients, i.e. A,B,C,D,E, F in Equation 4.1. Without loss of
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generality, we can divide both sides of Equation 4.1 by F , meaning:

A

F
x2 +

B

F
xy +

C

F
y2 +

D

F
x+

E

F
y + 1 = 0 (4.10)

Since A,B,C,D,E, F are just scalars, we can express Equation 4.10 as

Ax2 +Bxy + Cy2 +Dx+ Ey = −1 (4.11)

Equation 4.11 can be expressed in vector forms as

[
x2 xy y2 x y

]

A

B

C

D

E

 = −1 (4.12)

With each column in Q2D, we essentially add one more constraint (linear equation) to

solve for the coefficients. By stacking all the constraints, we can express our system of

equations as 
x21 x1y1 y21 x1 y1

x22 x2y2 y22 x2 y2

· · · · ·
x2n xnyn y2n xn yn


n×5︸ ︷︷ ︸

S


A

B

C

D

E


︸ ︷︷ ︸

c

=


−1

−1

·
−1


n×1︸ ︷︷ ︸

b

(4.13)

Equation 4.13 essentially describes an overdetermined system. We can use the least-

square optization method to find the approximate solution [39]. Equation 4.14 shows

how to obtain the coefficients.

c = (STS)−1STb (4.14)

With c, we can classify the curve into ellipse, hyperbola, or parabola (section 4.1.1).

However, regardless of classification, we can still determine the principle axis, their

lengths, and the center [40]. To summarize, these parameters (using the same notation
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as Equation 4.2 and Equation 4.3, where possible) can be calculated as

a =
√
−∆/(λ21λ2) (4.15)

b =
√
−∆/(λ1λ22) (4.16)

xc = (BE − 2CD)/(4AC −B2) (4.17)

yc = (BD − 2AE)/(4AC −B2) (4.18)

m1 = 2(λ1 − a)/B (4.19)

m2 = 2(λ2 − a)/B (4.20)

where

• m1, and m2 are the slopes of the principle axis with length a, and b respectively.

Note: m1m2 = −1 because the principle axes are orthogonal to each other.

• λ1, and λ2 are the eigenvalues of

[
A B/2

B/2 C

]

• ∆ =

∣∣∣∣∣∣∣
A B/2 D/2

B/2 C E/2

D/2 E/2 F

∣∣∣∣∣∣∣, with operator | · | denotes the determinant of a matrix.

For the sake of consistency, which will also be beneficial for formulating a trajectory

generator later in Section 6.3.1, we have to establish an order for λ1 and λ2, because a, b

and τ depends on this order. Figure 4.2 demonstrates how the order of λs affects the

parametric form of an ellipse and a hyperbola.

For an ellipse : The order of λ does not change the shape of the parametric form.

However, different orders will yield different segments of the ellipse corresponding to the

same θ segment, i.e. with θ = pi/3, different λ order results in different point in space,

as in Figure 4.2a. Within this project, the convention will be

|λ1| ≤ |λ2|

Consequently, this means a > b because a is inversely proportional with λ1. τ is then

calculated as

τ = tan−1(m1), τ ∈ [−π
2
,
π

2
]
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(a) Ellipse

(b) Hyperbola

Figure 4.2: Effect of the order of λ on parametric form of a conic sections.

Geometrically, this is equivalent to having an origin-centered horizontal ellipse (i.e. the

longer principle axis is parallel to x-axis) rotated by τ and translated by (xc, yc). If we

pick the other order, i.e. |λ1| ≥ |λ2|, it is equivalent to having an origin-centered vertical

ellipse (i.e. the longer principle axis is parallel to y-axis) rotated by −(π/2 − τ) and

translated by (xc, yc).

For a hyperbola : Different λ order will yield different shape of the parametric form.
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This λ order will dictate the direction of opening of the hyperbola. Hence, the solution

for the order of λ is unique in this case, contrasted to the ellipse. To solve this, we can use

the eccentricity of a conic section. Eccentricity, along with the lengths of the principal

axes, are the only invariants of a conic section - a quantity that does not change when

the conic undergoes isometric transformation [41]. For a hyperbola written in general

conic section form, as described by Equation 4.1, its eccentricity can be calculated as

eg =

√
2
√

(A− C)2 +B2

−(A+ C) +
√

(A− C)2 +B2
(4.21)

And by definition, the eccentricity of a hyperbola in parametric form (Equation 4.3) is

calculated as

ep =

√
a2 + b2

a
(4.22)

So we have to choose λ order such that ep = eg. τ is then calculated as

τ = tan−1(m1), τ ∈ [−π
2
,
π

2
]

Note: We can not apply the same strategy (using eccentricity) for an ellipse fitting

because the eccentricity of an ellipse in parametric form is calculated as

ep =

√
c2 − d2
c

Where c = max{a, b}, and d = min{a, b}. Hence, regardless of either |λ1| < |λ2| or

|λ2| < |λ1|, ep will always be equal to |eg|. Hence, eccentricity approach is not useful.

Once we obtain the parametric form of a conic section, either ellipse or hyperbola, we

can then find the correspondent point. Since the parametric form of a conic is a function

of angle θ, this means that ultimately, we would want to find the corresponding θ of the

model to a single data point. This can be done through optimization formulated with

min
θ
||x̂(θ)− x||2 (4.23)

where x̂(θ) =
[
x(θ) y(θ)

]T
is a point generated by the fitted model with angle θ, x is the

data point we try to find the correspondent of. We use fminsearch function provided by
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MATLAB to find the solutions. Since optimization is sensitive to initial guess, Algorithm

2 describes a method to efficiently solve for all θ of a segmented handover reaching motion

Algorithm 2: Finding all correspondent θ to a segmented handover reaching motion

Input: Q2D = {Qi}, i = 1, 2, · · ·N , Qi is x in Equation 4.23
Output: Θ = {θi}, i = 1, 2, · · ·N ; Qcorr

2D = {Qcorri }, Qcorri is x̂ in Equation 4.23
Function FindTheta(Qi, θ):

θi ← solution of optimization with objective 4.23, initial guess θ ;
return θi;

MinError ←∞ ;
for ← 1 to 20 do

θ0 ← RAND(−π, π) ;
θ1 ← FindTheta (Q1, θ0) ;
Qcorr1 ← parametric equation evaluated at θ1;
for k ← 2 to N do

θk ← FindTheta (Qk, θk−1) ;
Qcorrk ← parametric equation evaluated at θk

end
TotalError ← ||Q2D −Qcorr

2D ||2;
MinError ← min(MinError, TotalError);

end
Θ← Θ such that TotalError = MinError;
Qcorr

2D ← Qcorr
2D such that TotalError = MinError;

In summary, to find the correspondent, first, we initialize a random guess for θ of the first

point in the data point array, Q2D. Optimization is then used to find the correspondent

of the first point in the data point array. Then we use that first correspondent point

as the initial guess to find the second correspondent point. At this point, we iterate

until we find all the correspondent points. This whole process is done 20 times with 20

random initializations, and the array of correspondents with the lowest overall error is

the best-fit. Hence we obtained Qcorr
2D with its corresponding Θ

4.2.6 Decoupled Minimum Jerk Model

In decoupled minimum jerk motion model, there are 2 parameters we can tune, the

duration of the motion along xy plane, texy and the duration along z axis, tez. Since the

duration is finite, without loss of generality, we can normalize both the duration with

the duration along xy plane. With this normalization, texy = 1 = const and tez ∈ (0,∞).

Since we are fitting a set of 2D points in xy plane, we will abuse x(t) and y(t) notation,
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which have been familiar with us in section 4.2.5 so far. This is still valid because it is

effectively a change of coordinate system, where a vector in xy plane and z being the

bases for Equation 4.6 and Equation 4.7, x and y are the bases for Q2D. We can then

express model in this 2D plane as

x̂(t) =

[
x(t)

y(t)

]
=

[
a0xy + a1xyt+ a2xyt

2 + a3xyt
3 + a4xyt

4 + a5xyt
5

a0z + a1zt+ a2zt
2 + a3zt

3 + a4zt
4 + a5zt

5,

]
(4.24)

The coeffcients can be found using boundary condition of Q2D. In practice, boundary

condition was solved using Qextra
2D . If Q2D = {Qi}, i = 1 · · ·N , then Qextra

2D = {Qi}, i =

−2,−1, · · ·N + 1, N + 2. Heading and trailing elements will help with more accurate

calculation of the initial velocity and acceleration. To solve for tez and the correspondent

points, we effectively solve N optimizations inside an optimization. The outer objective

can be formulated as

min
tez
||Q2D −Qcorr

2D ||2 (4.25)

Where each column in Qcorr
2D , i.e. each correspondent point generated by Decoupled

Minimum Jerk Model, for a given tez (because the coefficients of DMJ in Equation 4.24

depends on tez), can be found through optimization with the inner objective

min
t
||x̂(t)− x||2 (4.26)

Again, we can find the best-fit tez and Qcorr
2D using fminsearch offered my MATLAB.

4.3 Comparison of Motion Models

To determine which model best fits unconstrained handover reaching motions, we con-

ducted an ANOVA analysis, followed by t-tests with Bonferroni correction (alpha =

0.05) to compare the fitting error of the three models (Conic, Minimum Jerk, Decoupled

Minimum Jerk). We then examined the conic fit results to determine the percentage of

elliptical, parabolic, and hyperbolic curves.
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Fitting Results

5.1 Statistical Results

Out of the 1200 handovers in the dataset, four trials were excluded due to missing

too much trajectory data, and one trial was identified as an outlier where participants

handover with their left hand. Fig. 5.1 shows the three fitted models for an example

trial in 3D space. Fig. 5.2 shows the fitted Conic and Decoupled Minimum Jerk models

for the same example trial projected on the 2D best fit plane. Table 5.1 summarizes

resulting fitting error for each model. Examining individual trials, among the 1195 fitted

handover motions, there are 752 (62.9%) samples where the conic model fits best, 442

(37.0%) where Decoupled Minimum Jerk model fits best, and 1 (0.08%) where Minimum

Jerk trajectory fits best. When the conic model is the best fit, the average fitting error

for the Decoupled Minimum Jerk model is 7.2 ± 10.0 times larger. However, when the

Decoupled Minimum Jerk model is the best fit, the average fitting error for the Conic

model is only 2.9± 3.6 times larger.

Table 5.1: Model fitting error mean and standard deviation.

Conic Decoupled Min Jerk Min Jerk

Mean (mm) 2.0 2.4 14.3

Std. Deviation (mm) 3.2 3.9 12.4

Max (mm) 34.2 34.5 121.9

24
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Figure 5.1: Example handover trajectory and the fitted models

The result from ANOVA comparing human handover reaching motion fitting error among

the three models showed that there are significant differences (F (2, 358) = 970.7, p <

0.0005). Post hoc t-test revealed that both Decoupled Minimum Jerk and Conic model

fitted unconstrained handover reaching motions better than Minimum Jerk trajectory

(t(1194) = 39.9, p < 0.0005; t(1194) = 33.7, p < 0.0005). Furthermore, Conic model

fitted better than Decoupled Minimum Jerk trajectory (t(1194) = 3.03, p = 0.007).

Statistical analysis showed that the Conic model is the best fit model. Examining the

fitted Conic model, 407 (34.1%) samples were elliptical, 705 (59.0%) hyperbolic, and 83

(6.9%) parabolic.

5.2 From Path to Trajectory

Path specifies the positional aspect of a motion, while trajectory specifies positional

and temporal aspects of a motion. The Elliptical (Conic) model [29] is a path model

while the Minimum Jerk [30] and Decoupled Minimum Jerk [28] models are trajectory
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Figure 5.2: Fitted Conic and Decoupled Minimum Jerk models projected onto the
best fit 2D plane from an example trial. Plots rotated to align conic major and minor

axis with x and y axis.

models. Note that while θ in Eq. 4.2 can be expressed in terms of time to obtain

a trajectory for the Conic model, previous study [29] had not examined the temporal

aspect and considered only the path. This project also compared the path (without

temporal aspect) of each motion model. Although the path generated by a Decoupled

Minimum Jerk trajectory was found to fit the reaching motion well, we found that the

error increases significantly if we use the actual trajectory and take the model’s temporal

aspect into consideration (i.e., defining point correspondence for Eq. 4.8 using time

rather than closest point based on spatial distance). Hence, by finding an appropriate

time parameterization of θ for Eq. 4.2, we can construct a Conic trajectory model that

better fits human handover reaching motion as well. Furthermore, if a subtle pattern

emerges in these fitted conic sections (their shapes and ranges of θ), we can exploit that

to generate a fully defined trajectory only by a start point and an end point.
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Elliptical Trajectory Generator

Due to time limitation, although we mentioned that the Conic model could either be

Hyperbola, Parabola or Ellipse, at the time this report is written, only the elliptical

model has been used to formulate a trajectory generator. Thus, for analysis in this

chapter, only samples in which the handover reaching trajectory is classified as ellipse

are considered.

6.1 Hardware

This information is crucial to some of the design choices in later sections of this chapter.

This project’s ultimate goal is to formulate a trajectory generator for different models

mentioned in earlier chapters to implement on a real-life robot, where the robot will

perform a handover to a human receiver. The platform that we chose is a table-mounted

Franka Emika Panda robotic arm. The robot has 7 degrees of freedom and a two-finger

parallel gripper. The tabletop is 0.9m from the ground. Figure 6.1 shows the hardware

setup we have in the laboratory.

6.2 Choosing Samples

Observing the dataset reveals that there are two θ patterns, depending on the partici-

pant’s height and the object they were handing over. Figure 6.2 demonstrates the two

27
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Figure 6.1: table-mounted Franka Emika Panda robotic arm

typical arcs. This is intuitive because this property of a curve is binary (either upper

or lower). Within this dataset, human is more likely to adopt a lower arc trajectory the

lower the position of the contact point between giver and the object and vice versa 1.

There may be an anatomical explanation for this phenomenon, but this is out of the

project’s scope. However, one can experiment with this behaviour by placing objects at

different heights and perform a handover; there will be a certain level of awkwardness

associated with one of the two arcs for a specific height.

For a given height, the object’s position with respect to the human will also yield dif-

ferent motions. Figure 6.3 shows how a participant moves with different initial object

placement. The dataset has three different initial placement for each object as mentioned

in Section 3.1, left, right and behind. Because the givers are asked to perform uncon-

strained handover only with their right hand, getting objects on their left or behind

would require twisting the body.

1 The validity of this statement also depends on which approach the giver adopted between the two
mentioned in Figure 3.5. This statement is only true if the approach in Figure 3.5a is adopted, which is
73.97% of the dataset. There was no correlation found if approach in Figure 3.5b is adopted
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(a) Upper Arc (b) Lower Arc

Figure 6.2: Two common arcs in handover. In the dataset, the table height is constant,
and participants’ heights vary. To simulate the same effect for visualization, objects are

at different heights for the same person.

To reduce the complexity and identify a meaningful pattern to apply on a real-life robot,

only samples where the object being initially placed on their right and the trajectory

being upper arc are considered. Another reason for the latter choice is because of how

the robot is set up in the laboratory: with the table height at 0.9m, people with average

height tend to pick up the object with the same pose as Figure 6.2a and then execute

an upper-arc trajectory.

To summarize, within the scope of this report, the trajectory generator is formulated by

analyzing samples such that:

• The handover reaching trajectory is classified as an ellipse

• The object is initially placed to the giver’s right-hand side

• The trajectory follows an upper arc shape

These conditions yield 76 samples among 1195 samples from the dataset.

6.3 Trajectory Generator

The trajectory we are formulating is a reaching motion. This means that we do not

account for the minute adjustment towards the end of the handover to place the object
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(a) RHS (b) LHS

Figure 6.3: Human motion with different initial object placement. A - object is
initially placed on the Right Hand Side (RHS) of the giver, B - object is initially placed

on the Left Hand Side (LHS) of the giver

on the human’s hand correctly. Hence, the responsibility for a successful transfer relies

on the human receiver or a perception system to track the human’s hand and perform

visual servoing once the trajectory is completed. This also means that this trajectory is

only generated once the robot is ready to perform the handover, which is not necessarily

at the instance the robot grasps the object. For the sake of simplicity, the starting point

(handover-ready point) and the ending point (object transfer point) are the inputs to this

trajectory generator. This assumption can be justified because we can obtain the object

transfer point using an estimator [42], or simply the middle point of the receiver’s torso,

and the starting point depends on the object we are handing over and the configuration

of the robot.

To fully define an ellipse in 2D, we have to calculate 5 parameters a, b, xc, yc, τ as de-

scribed in Equation 4.2. With the inputs to the trajectory generator, we obtained 4

equations 

xstart = xc + a cos(θstart) cos(τ)− b sin(θstart) sin(τ)

ystart = yc + a cos(θstart) sin(τ) + b sin(θstart) cos(τ)

xend = xc + a cos(θend) cos(τ)− b sin(θend) sin(τ)

yend = yc + a cos(θend) sin(τ) + b sin(θend) cos(τ)

(6.1)
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Figure 6.4: Random 16 ellipse fitting

In fact we have two more unknown: θstart, and θend. In summary, we have four con-

straints and seven unknowns. This assumes that we already know the plane containing

the ellipse.

6.3.1 Pattern Identification

The formulation so far has given us an underdetermined system, i.e. there are infinite

solutions. However, by inspecting the dataset with the 124 samples chosen in section

6.2, we discover a few common patterns. Figure 6.4 shows 16 random samples of a fitted

ellipse to handover reaching trajectory. From this figure, a pattern in θstart and θend is

quite visible. Upon further analysis, statistical results show that θstart = 3.521◦±5.343◦

and θend = 179.023◦ ± 4.687◦. We also noticed a pattern in the shape of the fitted

ellipses, especially on its ”thinness”, i.e. the ratio of the semi-major and semi-minor of

the ellipse. Statistical analysis shows that a
b = 3.8399± 2.6525.
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Figure 6.5: Spherical Coordinate

If the mean values of these three parameters are considered a solution, then the solution

to the system of equations 6.1 is fully defined for a given starting point and ending point.

However, this ellipse is only defined in a given plane, i.e. there are an infinite number

of ellipses that satisfy Equations 6.1 in 3D space.

A plane in 3D is fully defined by one point on the plane and its normal vector, ~n. Since

we already know 2 (boundary) points on the plane, i.e. starting point and ending point.

We only need to learn the pattern of the normal vector to identify the pattern of fitted

planes. If we call the vector connecting the two boundary points boundary vector, ~b,

then the normal vector is always orthogonal to this boundary vector. In other words,

the normal vector (~n) of the fitted plane (P) lies on a plane, Q, that is defined by the

boundary vector, i.e. ~b is the normal vector of Q. Hence, to find a pattern of the normal

vector of P, we have to express ~n in Q. This constraint is crucial for reconstructing the

plane’s normal vector from an arbitrary boundary vector.

Fortunately, we do not have to manually define a set of bases on Q because there is

already an established coordinate that does exactly this: Spherical Coordinate. Figure

6.5 gives an visualization of Spherical Coordinate. r̂ is unit vector for ~b, θ̂ and φ̂ will

span Q. Figure 6.6 shows the result of the projections and the mean normal vector.
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Figure 6.6: Fitted Normal Vector

6.3.2 Time parameterization

We have now obtained a well-defined path in 3D space for the elliptical model for a

given start point and end point. To turn this into a trajectory, we have to introduce

the temporal aspect to this generator. Since the elliptical model is parameterized by θ,

we have to express θ as a function of time. Because we will ultimately implement this

trajectory on the Franka robot, we must be careful about how to express this function.

One might propose using the Θ found in Algorithm 2, which is a function of time and

fit a model to it. However, this will not be suitable for the robot. Since this dataset is

unconstrained handover, multiple motions are blended, meaning the segmented handover

has non-zero initial velocity and acceleration as discussed in Section 3.2. If we try to fit a

model to Θ, it will result in a motion where initial velocity and acceleration is non-zero.

This is a highly undesired behaviour for the robot as it will create a sudden jerk at

the start of the handover, which potentially induce a high distrust and vigilance to the

human receiver. Instead, with the collaboration of Sara Sheikholeslami, we obtained the

dataset she collected in [29]. This dataset has already annotated the reaching motion,

and in her study, the reaching motion has zero initial condition. Hence, we will use her

dataset to fit a function of time to θ.

We normalize time so that all reaching motion starts from time 0 and end at 1 because
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Figure 6.7: Fitted Theta

different reaching motions have different durations. We also normalize all θ so that they

start from 0 and end at 1 because the range of θ depends on the length of the participant’s

arm. With this normalization, we notice that data have a high resemblance to a sigmoid

function. Hence we tried to fit a sigmoid function to this normalized θ versus time

dataset. A sigmoid in general form is expressed as

f(t) =
l

1 + e−m∗(n−j)
− o (6.2)

To fit the sigmoid function, we first calculate the mean of θ versus time in Sara’s dataset,

interpolate the mean using interp1 from MATLAB to N number of points, and use

fminsearch where the input is the four parameters l,m, n, o. The cost function is the

least square error similar to 4.23. Figure 6.7 shows the fitting result.



Chapter 7

User Study

7.1 User Study Design

A user study is designed to evaluate the performance of the Elliptical Motion model on

natural human-robot handover. The study has been sent to and approved by Monash

University’s Ethics Review Board.

We will manipulate one independent variable, Trajectory Model: Elliptical Model, De-

coupled Minimum Jerk Trajectory, slanted Decoupled Minimum jerk Trajectory 1 and

Minimum Jerk Trajectory.

We will recruit participants within the lab and a limited number of people who have

access to our building because of the COVID-19 restriction.

7.1.1 Procedure

Two investigators will supervise the user study in the university’s laboratory. First,

users will be asked to read the explanatory statement and sign a consent form. Next,

we will explain the experiment by reading from a written script. The participants will

then complete a small demographic survey.

1Decoupled Minimum Jerk Trajectory but rotated so that it lies on the same plane as the plane
generated by the Elliptical model

35
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Human-Robot Fluency
The human-robot team worked fluently together.
The robot contributed to the fluency of the interaction
Trust in Robot
I trusted the robot to do the right thing at the right time.
The robot was trustworthy
I felt safe completing the handovers
Working Alliance
The robot accurately perceives what my goals are.
I understand what the robot’s goals are
The robot and I were working towards mutually agreed upon goals

Table 7.1: Survey Questions

Three objects, a steel water bottle, a multivitamin container, and a SPAM box, will be

put at a designated place where the robot knows the location beforehand. After the

robot picks up the object using Intel RealSenseD435 RGB-D camera that is mounted

to the end-effector by detecting an AR tag attached to each object, the robot will move

to ready pose to start the handover 2. The user will handover 12 times in each trial:

4 times for each object. After each trial, the user will complete a survey. The survey

questions are listed in Table 7.1 There are 3 trials per participant corresponding to the

3 Trajectory models, totalling to 36 handovers per participant. Finally, the participant

will complete a post-study survey to provide comments and feedback on the study. An

entire experiment takes approximately 30 minutes for each participant.

We utilize the subjective metrics outlined in [43]. We will only use a subset of questions

that are relevant. All questions are measured on a 5 point Likert scale.

7.2 Robot Implementation

Because of hardware limitation, although the duration of a typical human handover is

≈ 1.2 seconds, the duration the robot execute each trajectory will be 4 seconds. When

the user is ready for the first handover, a Kinect, which has already been calibrated the

robot’s base frame, will detect the skeletal pose of the participant and obtain the height

2The ready pose is different for each object because we pick the object top-down, so x and y position
of the ready pose is constant while z will vary depending on object’s height
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Figure 7.1: Elliptical Trajectory on Panda Franka Emika robotic arm

of their torso and the arm’s length. We use these two pieces of information to estimate

the Object Transfer point by setting the OTP’ height to the participant’s torso height,

the reaching distance (from the base) by the length of the participant’s arm. Hence, we

obtain the starting point and ending point for each trajectory for each participant. This

information is enough to generate all the 4 trajectories we want to compare as discussed

in Section 6, Section 4.1.3, and Section 4.1.2.

Once the desired trajectory is loaded, the robot’s end-effector will track it using a

Jacobian-transpose Cartesian-impedance controller. Since we have not taken into ac-

count the object’s orientation during handover, the end effector will have constant ori-

entation throughout the reaching motion, which is (0, 0, 0, 1) in quaternion, as shown in

Figure 7.1.
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Discussion

8.1 Insights on differnce between models

The original Minimum Jerk trajectory model was formulated for reaching motions and

follows a straight line trajectory for point-to-point motions. This was found to be con-

trary to natural human handover reaching motions, which were observed to be curved.

The Decoupled Minimum Jerk model was subsequently proposed to allow a curved path,

as inspecting the velocity profile along different axes of human reaching motions, it was

found that the z-axis motion tends to terminate sooner than that in the xy plane, prompt-

ing the decoupling of the axes and setting different motion durations [28]. Consequently,

the relationship between the motions along each axis is non-linear, creating a curve in

space instead of a straight line. Although this approach is more similar to natural human

motions, the residual at the end of the Decoupled Minimum Jerk trajectory yields an

unnaturally straight line at the end of the motion. For example, without loss of gener-

ality, let tz < txy. At tz, the motion along the z-axis has finished while motion in the

xy plane has not. After this, motion along the z-axis simply ceases, while the reaching

motion model continues to move in the xy plane in a straight line. Fig. 8.1 shows the

effects of tz to txy ratio on the shape of the curve. The Conic model, on the other hand,

does not suffer from this phenomenon. Hence, of the three models considered, the Conic

model is the only one that yields curved motion along the entire reaching trajectory.

We have chosen the Minimum Jerk Model as the baseline since it is a well-established

model for handover trajectories. Although the conic model’s better fit may be attributed

38
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Figure 8.1: Resulting Decoupled Minimum Jerk Trajectories for different duration
ratios r = tz

txy
. Note that r = 1 yields a Minimum Jerk Trajectory

to having more parameters, and one may be tempted to simply use an even higher-order

function to achieve a better fit, this would increase the computational cost for online

trajectory generation and risk overfitting. We have also confirmed by Bayesian Evidence

(following [29, 44]) that indeed, a second-order polynomial (conic) best fits the dataset.

8.2 Unconstrained Handovers

Unlike most existing studies on reaching motions, which focused on constrained (seated,

tabletop) tasks, we have examined unconstrained handovers, as we are interested in en-

abling handovers in a more general setting. This meant that participants were no longer

restricted to using only arm motion, but could utilize their whole body. We discovered

that, contrary to literature reporting that human reaching motion in constrained tasks

is elliptical [29], a majority of human reaching motion in unconstrained handovers are

hyperbolic instead. We observed that unconstrained participants naturally utilize full-

body motion to carry out handovers, with a combination of the following body motions

used (in addition to arm motion).
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Torso Twisting : Objects were placed beside or behind the giver. As a result, the giver

naturally needs to turn their body to pick up the objects. However, torso twisting was

observed to occur not only during the pick-up phase, but throughout the entire handover

task. Participants used torso twisting to bring the object from the side/back to the front

(towards the receiver) and extend their arm’s reach when delivering the object to the

receiver. Hence, the hand trajectory incorporates torso rotational motion and shoulder

translational motion.

Leaning : Towards the end of the handover, the giver sometimes leans towards the receiver

to deliver the object. This leaning motion can potentially be pre-planned, or if the giver

misjudged the object transfer location after the arm has been fully reached out and torso

twisting utilized, the giver needs to lean further to cover the remaining gap.

Stepping : Givers occasionally take steps towards the receiver during handover. This

potentially adds a translational component to the hand trajectory with respect to the

world frame. Consequently, the end of the hand trajectory may be elongate and flatten.

However, literature shows that givers tend to begin their reach only after they are suffi-

ciently close to the receiver [11], and in our analysis, we found that most givers took zero

or only one step. Hence, the observed trajectories in our studies are mostly a combined

result of the other aforementioned motions.

8.3 Rare Handover Cases

We observed some unexpected/outlier behaviour in the dataset. For example, some

givers only picked up the object and held the object near their torso, without much

”reaching” motion towards the receiver, and waited for the receiver to reach out to

take the object. Another example is that sometimes the giver has to ”hand down” the

object because the receiver did not reach out their hand sufficiently to meet the giver at

the midpoint between them. These interesting outliers may provide insights on human

behaviour and how we should program human-robot handovers for humanoids operating

in the real world.
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8.4 Towards Fluent Human-Robot Handovers

Service robots will be expected to perform frequent handovers with users in many ap-

plications. Hence, their ability to perform this task well is crucial. Existing studies tend

to argue the use of a Minimum Jerk or Decoupled Minimum Jerk trajectory for han-

dover reaching motions by showing that their velocity profiles look similar to observed

human reaching motions [15, 16, 28]. Furthermore, they show that when implemented

onto robot handover reaching motions, it produces a more positive subjective perception

of the robot. However, they have not fitted the proposed trajectory models to human

reaching motions. We have empirically shown that the Conic model fits human handover

reaching motions better than the existing Minimum Jerk and Decoupled Minimum Jerk

trajectories.

Furthermore, existing studies have been primarily restricted to constrained (seated,

tabletop) tasks. However, service robots will need to perform handovers in a wide

range of unconstrained situations. We have shown that human reaching motions in

unconstrained handovers, while still conical, is no longer restricted to elliptical, as in

constrained tasks [29]. There is also coordination of full-body motion.

As we observed that humans use coordinated full-body motion for handovers, a robot

giver may also need to consider how to coordinate its full-body motion, instead of plan-

ning only arm motion, as most existing handover motion planners do [15, 16, 28]. As a

receiver, the robot can observe the onset of the human giver’s reach and use the Conic

model to estimate the endpoint to predict the point of object transfer. This will then

allow greater flexibility and enable the robot to plan and begin executing its reaching

motion for intercepting the object early on during the reaching phase of the handover,

unlike existing robots that tend to wait until the giver finishes reaching, or can only

hand over the object at a predefined location [18, 45, 46]. As handover is a ubiquitous

task for service robots working with people, improving their competence in this funda-

mental task is expected to improve their overall interaction with users in a wide range

of applications.

8.5 Limitation and Future Work

As mentioned in this footnote 2 on page 12, if the conic section is classified as a parabola

in this project, it is fitted with a hyperbola due to numerical zero. While this is still
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valid, it is not consistent with the method we proposed. Therefore, further research into

the literature is required to find the parametric form of a parabola from a general conic

section’s coefficients.

Among the three possible Conic Section: ellipse,s hyperbola, and parabola (we did not

find a sample where circle fits best), we have only formulated a trajectory generator for

ellipses. Further analysis is required to formulate the rest.

We have only looked at a very specific condition for the elliptical trajectory generator:

a right-hand upper-arc trajectory. We can simply mirror the trajectory and simulate a

motion that hand objects initially placed on the left-hand side by a ”left-handed” robot.

However, further analysis is required to find a pattern where the robot is ”right-handed”,

and the object is initially placed on the left.

For the current hardware setup, the robot is fundamentally anatomically different from a

human arm. The robot is elbow-up while the human is elbow-down. If we can set up the

robot so that it has the configuration in [47], the motion would look more human-like.

The statistical analysis to formulate the trajectory generator is not rigorous enough (how

we determine the θstart, θend,
a
b , mean ~n). Further analysis would require to confirm if

the pattern has significant results. a and b might have other relationship than just simply

proportional.

Since we found a correlation between the object’s placement and the tendency to adopt

upper-arc or lower-arc trajectory, further analysis can reveal a concrete relationship

between these two characteristics.

The user study is already designed and approved by the Monash Board of Ethics. So

naturally, future work would include carrying out the user study.
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Conclusion

This project has experimentally compared the existing Minimum Jerk, Decoupled Mini-

mum Jerk, and Conic models for unconstrained human handover reaching motions. We

showed that while the Conic models fit best, unlike seated tabletop reaching motions

that were elliptical primarily, there is a split between elliptical and hyperbolic motion

models. This project provided experimental validation of reaching models for human

handover reaching motions. Results suggest that the Conic model may be used to gen-

erate more humanlike motions compared to the well-established Minimum Jerk models.

Furthermore, unlike solo reaching motions which are mostly elliptical, a mix of elliptical

and hyperbolic motions should be expected in handovers.

We have also designed a user study to compare the performance of Elliptical Models to

Minimum Jerk, Decoupled Minimum Jerk, and Minimum Jerk. A trajectory generator

for the Elliptical model was also formulated with a specific condition relevant to our user

study. We have also implemented and tested all these trajectories on the Franka Emika

Panda robotic arm.

There are a lot of potential directions to improve and expand from what we discovered

from this project. And they are all fascinating.
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(Decoupled) Minimum Jerk

Coefficients

The equation for minimum jerk trajectory is typically defined as a function of time in

1D, r(t), as described in equation 4.5. Since r(t) is a polynomial, its first and second

order derivative is straightforward:

r′(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4

r′′(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3

To describe this trajectory in 3D space with arbitrary start poind and end point, we can

express r(t) in three bases of the coordinate system:

r(t) = (x(t), y(t), z(t))

where

x(t) = a0x + a1xt+ a2xt
2 + a3xt

3 + a4xt
4 + a5xt

5

y(t) = a0y + a1yt+ a2yt
2 + a3yt

3 + a4yt
4 + a5yt

5

z(t) = a0z + a1zt+ a2zt
2 + a3zt

3 + a4zt
4 + a5zt

5

Without loss of generality, instead of finding coefficients for each dimension, we can

establish the equations for coefficients of r(t). In the context of handover, and as we
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observed from the dataset, terminal velocity and acceleration is 0, but initial velocity

and acceleration can be non-zero.

Hence, we have:

r(0) = r0 = a0 + a1(0) + a2(0)2 + a3(0)3 + a4(0)4 + a5(0)5 = a0

r′(0) = v0 = a1 + 2a2(0) + 3a3(0)2 + 4a4(0)3 + 5a5(0)4 = a1

r′′(0) = a0 = 2a2 + 6a3(0) + 12a4(0)2 + 20a5(0)3 = 2a2

r(te) = re = a0 + a1te + a2t
2
e + a3t

3
e + a4t

4
e + a5t

5
e

r′(te) = ve = 0 = a1 + 2a2te + 3a3t
2
e + 4a4t

3
e + 5a5t

4
e

r′′(te) = ae = 0 = 2a2 + 6a3te + 12a4t
2
e + 20a5t

3
e

where te is the duration, r0 is the initial position, re is the final position, v0 is the

initial velocity, ve is the final velocity, a0 is the initial acceleration, and ae is the final

acceleration. a3, a4, and a5 is now 3 unknowns with a system of 3 linear equations.

Hence, the solution for the coefficients can be found as

a0 = r0

a1 = v0

a2 =
a0
2

a3 = −3

2

a0
te
− 6

v0
t2e

+ 10
(re − r0)

t3e

a4 =
3

2

a0
t2e

+ 8
v0
t3e

+−15
(re − r0)

t4e

a5 = −1

2

a0
t3e
− 3

v0
t4e

+ +6
(re − r0)

t5e

It is transparent that the coeffcients depdends on the boundary condition and the dura-

tion of the trajectory. Notice that if tex = tey = tez , we have minimum jerk trajectory.

If tex = tey 6= tez , we have decoupled minimum jerk trajectory as described in section

4.1.3.
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Rodrigues’ Rotation Formula

To align n̂ and k̂, we have to choose a rotation axis and the angle to rotate. Since n̂

and k̂ is already unit vector, the angle between n̂ and k̂, α, can be found with simple

calculus

α = cos−1(n̂ · k̂)

The rotation axis, r̂, to rotate by α to align n̂ and k̂, is a vector such that it is orthogonal

to both n̂ and k̂

r̂ = n̂× k̂ = (r1, r2, r3)

We can then construct the skew-symmetric matrix corresponding to r̂ as

[r̂] =

 0 −r3 r2

r3 0 −r1
−r2 r1 0


Rotation matrix R can then be constructed as

R = I + sin(α)[r̂] + (1− cos(α))[r̂]2
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